Seaweed farming or kelp farming is the practice of aquaculture and seaweed. In its simplest form farmers gather from natural beds, while at the other extreme farmers fully control the crop's life cycle.
The seven most cultivated taxa are Eucheuma spp., Kappaphycus alvarezii, Gracilaria spp., Saccharina japonica, Undaria pinnatifida, Pyropia spp., and Sargassum fusiforme. Eucheuma and K. alvarezii are attractive for carrageenan (a gelling agent); Gracilaria is farmed for agar; the rest are eaten after limited processing. Seaweeds are different from mangroves and seagrasses, as they are photosynthetic algal organisms and are non-flowering.
The largest seaweed-producing countries as of 2022 are China (58.62%) and Indonesia (28.6%); followed by South Korea (5.09%) and the Philippines (4.19%). Other notable producers include North Korea (1.6%), Japan (1.15%), Malaysia (0.53%), Zanzibar (Tanzania, 0.5%), and Chile (0.3%). Seaweed farming has frequently been developed to improve economic conditions and to reduce fishing pressure.
The Food and Agriculture Organization (FAO) reported that world production in 2019 was over 35 million tonnes. North America produced some 23,000 tonnes of wet seaweed. Alaska, Maine, France, and Norway each more than doubled their seaweed production since 2018 . As of 2019, seaweed represented 30% of marine aquaculture. In 2023, the global seaweed extract market was valued at $16.5 billion, with strong projected growth.
Seaweed farming is a carbon negative crop, with a high potential for climate change mitigation. The IPCC Special Report on the Ocean and Cryosphere in a Changing Climate recommends "further research attention" as a mitigation tactic. World Wildlife Fund, Oceans 2050, and The Nature Conservancy publicly support expanded seaweed cultivation.
Long-line cultivation methods can be used in water approximately in depth. Floating cultivation lines are anchored to the bottom and are widely used in North Sulawesi, Indonesia. Species cultured by long-line include those of the genera Saccharina, Undaria, Eucheuma, Kappaphycus, and Gracilaria.
Cultivation in Asia is relatively low-technology with a high labor requirement. Attempts to introduce technology to cultivate detached plant growth in tanks on land to reduce labor have yet to attain commercial viability.
Nonetheless, many environmental problems can result from seaweed farming. For instance, seaweed farmers sometimes cut down mangroves to use as stakes. Removing mangroves negatively affects farming by reducing water quality and mangrove biodiversity. Farmers may remove Zostera from their farming areas, damaging water quality. Seaweed farms are routinely placed on top of seagrass meadows, particularly across Southeast Asia and the Western Indian Ocean, and numerous negative impacts occur.
Seaweed farming can pose a biosecurity risk, as farming activities have the potential to introduce or facilitate invasive species. For this reason, regions such as the UK, Maine and British Columbia only allow native varieties.
Farms may also have positive environmental effects. They may support welcome ecosystem services such as nutrient cycling, carbon uptake, and habitat provision.
Evidence suggests that seaweed farming can have positive impacts which include supplementing human diets, feeding livestock, creating biofuels, slowing climate change and providing crucial habitat for a marine life, but must scale sustainably in order to have these effects. One way for seaweed farming to scale at terrestrial farming levels is with the use of ROVs, which can install low-cost helical anchors that can extend seaweed farming into unprotected waters.
Seaweed can be used to capture, absorb, and incorporate excess nutrients into living tissue, aka nutrient bioextraction/bioharvesting, is the practice of farming and harvesting shellfish and seaweed to remove nitrogen and other nutrients from natural water bodies.
Similarly, seaweed farms may offer habitat that enhances biodiversity. Seaweed farms have been proposed to protect coral reefs by increasing diversity, providing habitat for local marine species. Farming may increase the production of herbivorous fish and shellfish. Pollinac reported an increase in Rabbitfish population after the start of farming of eucheuma seaweed in villages in North Sulawesi.
A study conducted by the Philippines reported that plots of approximately one hectare could produce net income from Eucheuma farming that was 5 to 6 times the average wage of an agriculture worker. The study also reported an increase in seaweed exports from 675 metric tons (MT) in 1967 to 13,191 MT in 1980, and 28,000 MT by 1988.
About 0.7 million tonnes of carbon are removed from the sea each year by commercially harvested seaweeds. In Indonesia, seaweed farms account for 40 percent of the national fisheries output and employ about one million people.
The Safe Seaweed Coalition is a research and industry group that promotes seaweed cultivation.
In 1982 Adelaida K. Semesi began a programme of research into seaweed cultivation in Zanzibar and its application resulted in greater investment in the industry.
Seaweed farming may be an initial step towards adapting to and mitigating climate change. These include shoreline protection through the dissipation of wave energy, which is especially important to mangrove shorelines. Carbon dioxide intake would raise pH locally, benefitting calcifiers (e.g. crustaceans) or in reducing coral bleaching. Finally, seaweed farming could provide oxygen input to coastal waters, thus countering ocean deoxygenation driven by rising ocean temperature.
Tim Flannery claimed that growing seaweeds in the open ocean, facilitated by artificial upwelling and substrate, can enable carbon sequestration if seaweeds are sunk to depths greater than one kilometer.
Seaweed contributes approximately 16–18.7% of the total marine-vegetation sink. In 2010 there were 19.2 × tons of aquatic plants worldwide, 6.8 × tons for brown seaweeds; 9.0 × tons for red seaweeds; 0.2 × tons of green seaweeds; and 3.2 × tons of miscellaneous aquatic plants. Seaweed is largely transported from coastal areas to the open and deep ocean, acting as a permanent storage of carbon biomass within marine sediments.
Ocean afforestation is a proposal for farming seaweed for carbon removal. After harvesting seaweed is decomposed into biogas (60% methane and 40% carbon dioxide) in an anaerobic digester. The methane can be used as a biofuel, while the carbon dioxide can be stored to keep it from the atmosphere.
In the tropics, commercial cultivation of Caulerpa lentillifera (sea grapes) was pioneered in the 1950s in Cebu, Philippines, after accidental introduction of C. lentillifera to fish ponds on the island of Mactan. This was further developed by local research, particularly through the efforts of Gavino Trono, since recognized as a National Scientist of the Philippines. Local research and experimental cultures led to the development of the first commercial farming methods for other warm-water algae (since cold-water red and brown edible algae favored in East Asia do not grow in the tropics), including the first successful commercial cultivation of carrageenan-producing algae. These include Eucheuma spp., Kappaphycus alvarezii, Gracilaria spp., and Halymenia durvillei. In 1997, it was estimated that 40,000 people in the Philippines made their living through seaweed farming. The Philippines was the world's largest producer of carrageenan for several decades until it was overtaken by Indonesia in 2008.
Seaweed farming spread beyond Japan and the Philippines to southeast Asia, Canada, Great Britain, Spain, and the United States.
In the 2000s, seaweed farming has been getting increasing attention due to its potential for mitigating both climate change and other environmental issues, such as agricultural runoff. Seaweed farming can be mixed with other aquaculture, such as shellfish, to improve water bodies, such as in the practices developed by American non-profit GreenWave. The IPCC Special Report on the Ocean and Cryosphere in a Changing Climate recommends "further research attention" as a mitigation tactic.
In 2024 a commercial-scale seaweed farm began construction within the Hollandse Kust Zuid (HKZ) 139 turbine wind farm. The project uses 13-metre long "Eco-anchors" that cover the surface with a marine life habitat using materials such as oyster shells, wood, and cork.
Economic impacts
Tanzania
Uses
Chemicals
Carrageenan
Agar
Food
Fuel
Climate change mitigation
Marine permaculture
History
See also
Sources
External links
|
|